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ABSTRACT 

The interacting multiple model (IMM) estimator, which mixes and blends results of multiple filters according to their 

mode probabilities, is frequently used to track targets whose motion is not well-captured by a single model.  This paper 

extends the use of an IMM estimator to computing impact point predictions (IPPs) of small ballistic munitions whose 

motion models change when they reach transonic and supersonic speeds.  Three approaches for computing IPPs are 

compared.  The first approach propagates only the track from the most likely mode until it impacts the ground.  Since 

this approach neglects inputs from the other modes, it is not desirable if multiple modes have near-equal probabilities.  

The second approach for computing IPPs propagates tracks from each model contained in the IMM estimator to the 

ground independent of each other and combines the resulting state estimates and covariances on the ground via a 

weighted sum in which weights are the model probabilities.  The final approach investigated here is designed to take 

advantage of the computational savings of the first without sacrificing input from any of the IMM’s modes.  It fuses the 

tracks from the models together and propagates the fused track to the ground.  Note that the second and third approaches 

reduce to the first if one of the models has a mode probability of one.  Results from all three approaches are compared 

in simulation. 
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1. INTRODUCTION 

The interacting multiple model (IMM) estimator , which mixes and blends results of multiple filters according to their 

mode probabilities, is frequently used to track targets whose motion is not well-captured by a single model [1,2,3,4].  

This paper examines the use of an IMM estimator in computing impact point predictions (IPPs) for small ballistic 

munitions whose motion models vary at subsonic, transonic, and supersonic speeds.  Such munitions exhibit variable 

drag characteristics depending on the mach regime the projectile occupies, and the rate of change of drag with Mach 

number is generally largest in the transonic regime.  The approach taken in this paper is to model projectile motion in 

the tracker with two types of dynamics, further assigning a high process noise and low process noise filter for each of 

these types of dynamics.  The desire in breaking out these types of dynamic models is to capture well behaved drag 

characteristics in the supersonic and subsonic regimes, while allowing enough model uncertainty in the transonic regime 

to maintain a good track.  The first dynamic model, the A-filter (acceleration-filter), assumes ideal point mass motion 

under the influence of gravity, drag, and a constant acceleration;   the second filter considered here will be referred to as 

the B-filter (ballistic-filter), and includes only dynamic accelerations arising from gravity and drag along the velocity 

component of the projectile center of mass.  The A-filter acceleration is included to model the cross range motion 

observed in spin stabilized projectiles, while the B-filter models a fin stabilized projectile. 

Three approaches for computing IPP estimates are compared.  The first approach propagates only the track from the 

most likely mode until it impacts the ground.  Since this approach neglects inputs from the other modes, it may not be 

desirable if multiple modes have near-equal probabilities, since the average of two equally likely models can be better 

then either one independently.  The second approach for computing IPPs propagates tracks from each model contained 

in the IMM estimator to the ground independent of each other and combines the resulting state estimates and 

covariances on the ground via a weighted sum in which weights are the model probabilities.  The third approach is 

designed to take advantage of the computational savings of the first without sacrificing input from any of the IMM’s 

modes.  It fuses the tracks from the models together and propagates the fused track to the ground.  Note that the second 



and third approaches reduce to the first if one of the modes has a probability of one.  Results from all three approaches 

are compared in a high-fidelity radar simulation. 

2. MODEL DYNAMICS 

Two types of target dynamics are considered for the IPP estimation.  The simplest includes only gravity and a drag force 

that is collinear with the projectile velocity, representing forces of simple ballistic motion.  We take the state vector of 

the system to be x = xp,xv,xΔβ,xβ0, where xp represents the target position, xv the target velocity, xΔβ a correction term to 

the ballistic coefficient, and xβ0 the first initial estimate of the ballistic coefficient as computed on filter startup.  The last 

state, xβ0, is static under both target dynamics and filter updates, and for that reason can be regarded as an auxiliary 

variable.  The equations of motion for B-filter are given in terms of the state variables, the altitude variable air density, 

ρ, and the flat Earth gravitational acceleration g as follows: 
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The dynamical equation for xv merits some discussion, since it is the standard acceleration equation for velocity 

dependent drag written in terms of nonstandard variables xβ0 and xΔβ.  This equation is more commonly represented in 

the form vvv ||g , where v is the velocity and γ is the drag coefficient.  As mentioned above, we have chosen 

to write the drag coefficient in terms of the altitude varying air density and the ballistic coefficient.  Denoting the 

ballistic coefficient by β, we can write the drag coefficient  

2
. 

This coefficient varies as a function of 

velocity, and usually exhibits the 

characteristics of the example drag 

coefficient function shown in Figure 1 [5], 

where it is shown as a function of the 

Mach number.  The Mach number is the 

projectile speed divided by the speed of 

sound.  The example curve demonstrates 

three generic regimes, subsonic, transonic, 

and supersonic.  The subsonic regime is 

that velocity range in which pressure 

waves that develop due to the objects 

motion can travel away from the moving 

object fast enough that no appreciable 

shock or bow wave can develop, and is 

characterized by speeds lower than about 

80% the speed of sound.  In the transonic 

regime, a bow wave forms and causes interaction with the projectile, and typically ranges from roughly 80% to 120% of 

the ambient speed of sound.  In the supersonic regime, characterized by speeds above 120% of the ambient speed of 

 
Figure 1.  Model drag parameter as a function of Mach number. 



sound, shock waves form around various surface features of the projectile, often dominated by the nose and base 

regions. 

We further separate out the ballistic coefficient into two terms, xβ0 and xΔβ above, the first of which is estimated in filter 

initialization, and the second of which is updated when new measurements are incorporated into the state estimate.  

These parameters are related to the ballistic coefficient through the relationship 

xxx
211

00

. 

This is essentially a change of variable that brings the Kalman filter into a more linear form. 

The second type of dynamics considered here for ballistic propagation includes a constant acceleration component, xa.  

This acceleration can account for the cross range motion typical of a spin stabilized projectile.  The equations of motion 

defining this type of dynamics are given by  
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Other types of dynamics could be considered to achieve the objective outlined above.  For instance, one natural 

approach is to introduce components of acceleration perpendicular to the velocity vector.  Such an approach would 

require the addition of only two more unknown parameters for the filter estimation. However, the resulting equations of 

motion would be more complicated than those described above and would result in a different type of motion.  The 

choice to use this form of dynamics in this analysis is made based on the simplicity of the filter update equations and the 

linear nature of the coupling of the process noise of this term with the other state variables. 

An important feature of the current investigation is the nonlinear form of the aerodynamic drag as a function of velocity.  

We are interested in predicting the impact point of ballistic projectiles, and as such require a drag template for 

prediction.  If the ballistic projectile is tracked through apogee before IPP estimation is required, then the up-leg track 

data history of xΔβ  may be suitable to predict the drag on the down-leg component of flight.  However, the amount and 

quality of such track data is often not sufficient for this purpose, since the sensor may not have the resources or 

capability to dedicate track energy to all of the up-leg flight or IPP estimation may be desired when only a portion of the 

up-leg trajectory has been observed.  In such situations, a drag template can be selected from a library of drag curves to 

aid in the prediction of impact point.  Although the IPP errors resulting from the use of an imperfect drag template can 

be significant, we assume for this analysis that such a drag curve is available and do not address their creation further in 

this analysis. 

3. KALMAN FILTER EQUATIONS 

The Kalman filters used within the IMM estimator to create results for this paper extrapolate with a fourth order Runge-

Kutta propagator and use the standard EKF measurement update equations.  Specifically, suppose that the last time a 

measurement was incorporated into the filter occurred at time 
k

t .  Define 
kt

x to be the state estimate after the last 



measurement update, and 
t

x  for 
k

tt  to be the propagated state. The state estimate 
kt

x  is a random variable, 

assumed to have a Gaussian distribution characterized by the state covariance matrix
kt

P .  The state dynamics are 

represented by a first order system of equations in both types of filters described in the previous section, and can be 

written compactly using the notation 
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 The Runge-Kutta integration of this state equation, starting with initial condition 
kt

x , is represented by 
kk ttt

x , so 

that 
kk tttt

xx .  It follows that the covariance of the propagated state satisfies the differential inequality 
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for some process noise term Q .  The equation for the covariance can be solved by Runge-Kutta integration as well, 

although the fact that 
t

x  has already been computed allows for good numerical solutions of this equation without 

resorting to such a method [7].  Denote the resulting integrated process noise by 
ktt

Q .  The fundamental solution to 

this equation can be written in the form 
T

ttttt kk

PP
0

, and the solution to the above inequality takes the form  

kkk tt

T

ttttt
QPP

0
. 

A measurement 
1k

z taken at time 
kk

tt
1

with estimated covariance 
1k

R  is incorporated in the usual manner [7].  

The measurement is assumed to be Gaussian distributed with covariance 
k

R .  In the cases considered here, the 

measurement is generated by a sensor model in which Gaussian noise is added to the RUV values of the true target 

trajectory.  The state is updated from 
t

x  to 
1kt

x with the measurement using the state-to-measurement map 

)(
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xh and its derivative )(
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x
x

h
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3. IMM FILTER IMPLEMENTATION 

The target motion model described in Section 2 encompasses both ballistic and accelerating motion.  Since the 

munitions under track can transition between these motion models, accurate prediction of their impact points must 

accommodate such shifts in the motion models.  Although a number of filtering techniques [6] could be used to address 

this problem, the IMM estimator is chosen for its computational efficiency.  Rather than using it solely to track the 

targets, this paper proposes using it as a filter-bank to sort through target dynamics and dynamic uncertainty, thus coarse 

tuning the target state representation and process noise model. 

We are assuming four filter types, with each filter characterized by its use of an A-filter or B-filter model and either 

high or low process noise.  In order to describe the filter model, we first introduce some basic notation.  The process 

noise is set to a diagonal in all filters.  The position, velocity, ballistic correction, and acceleration terms are set 



independently, and are denoted as
p

Q ,
v

Q , Q , and 
a

Q  respectively.  Here the process noise terms are 

process noise rates, and so their natural units are divided by seconds.  For example a position has units of meters, the 

position covariance has units of square meters, and the process noise rate has units of square meters per second.  The 

process noise rate choices for the filters used in the IMM for this paper are as follows: 

 Filter 1: B-filter (7 states) with diagonal process noise matrix defined by 
p

Q = 0.1 m
2
/s,

v
Q = 0.01 m

2
/ 

s
2
/s, Q = 1.0x10

4
 kg/ m

2
/s. 

 Filter 2: B-filter, high process noise (7 states) with diagonal process noise matrix defined by 
p

Q = 1 

m
2
/s,

v
Q = 0.1 m

2
/ s

2
/s, Q = 1.0x10

6
 kg/ m

2
/s. 

 Filter 3: A-filter (10 states) with diagonal process noise matrix defined by 
p

Q = 0.1 m
2
/s,

v
Q = 0.01 m

2
/ 

s
2
/s, Q = 1.0x10

4
 kg/ m

2
/s, and 

a
Q = 0.005 m

2
/ s

4
/s. 

 Filter 4: A-filter, high process noise (10 state) with diagonal process noise matrix defined by 
p

Q = 1.0 

m
2
/s,

v
Q = 0.1 m

2
/ s

2
/s, Q = 1.0x10

6
 kg/ m

2
/s, and 

a
Q = 0.05 m

2
/ s

4
/s. 

These filters are propagated using the dynamical process mentioned in Section 3.  These states are mixed at 

measurement time to produce the IMM tracker.  Following [6], we define our notation for the IMM process as follows: 
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kk |
 is the probability of filter i given all measurements up to time k. 
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p is the probability of the state dynamics being described by filter i at time k, given that the dynamics were 

described by filter j at time k-1. 
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is the state estimate assuming filter i at time k, and given measurements through time k’. 
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i
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j

k
 is the propagator for the jth dynamic model that propagates for time 

kk
tt

1
. 

 
j

k
 is the fundamental matrix solution of the jth dynamic model Ricatti equation for the covariance 

corresponding to the time interval 
kk

tt
1

. 

 
j

k
Q  is the integrated process noise for the jth dynamic model corresponding to time interval 

kk
tt

1
. 

This IMM estimator is broken into a five step process [6], as described below.   

1. Mixing of the state estimates:  For each of the model change probabilities 
)(

,

k

ij
p , compute 

4

1

)(

,

1

1|11|1

|

1|1

j

k

ij

i

kk

j

kk

ij

kk
p  

4

1

|

1|11|11|1

j

ij

kk

j

kk

i

kk
XY  

4

1

1|11|11|11|11|1

|

1|1

,

1|1

j

Tj

kk

j

kk

j

kk

j

kk

j

kk

ij

kk

iY

kk
YXYXPP  



2. Model conditioned updates:  Compute the new state and covariance estimates using the new 

measurement. 
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3. Model likelihood computations:  Compute the likelihood of the model i at time k given the filter 

residuals 
i

k
Z
~

. 

i
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4. Update of model probabilities: 
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Combination of state estimates:  The state estimates are blended for use in IPP.  Three methods are considered for this 

step, as described in the next section. 

4. IMM BLENDING FOR IPP 

Three approaches are considered for blending the results for IPP using IMM filters with and without mixing.  The first 

approach propagates the filter with the highest mode probability to the ground, and uses the filter covariance projected 

onto the ground to estimate the ground plane covariance. The second method propagates all model outputs to the 

ground, where it blends their IPPs using the mode probabilities associated with each track.  The third method first 

blends the tracks at the time of the last measurement and propagates this track to the ground, again estimating the 

ground plane covariance using the projection of the propagated covariance into the ground plane.  These three blending 

methods are described algorithmically as follows: 

 Blending Method 1 (BM1):  Propagate using filter with highest mode probability 

1.  Compute IPP time 
IPP

kk
t

|
from 

max

|

j

kk
X using 

max

|

max j

kk

j

t
X , where jmax is the filter with the highest mode 

probability
j

k
. 

2.   Compute the impact point and covariance using a ballistic template to deal with drag variable Mach.       
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3.  Project the j state estimate and covariance onto the ground using the state space to ground plane projections 
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 Blending Method 2 (BM2):  Propagate and blend. 

1. For each IMM model, compute IPP time 
jIPP

kk
t

,

|
from 

j

kk
X

|
using 

j

kk

j

t
X

|
.  

2.  Compute the impact point and covariance using a ballistic template to deal with drag variable Mach.       
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3.  Project the j state estimate and covariance onto the ground using the state space to ground plane projections 
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4.  Compute the blended state and covariance in the two dimensional ground plane.  
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 Blending Method 3 (BM3): Blend and propagate. 

1.  Compute the blended state and covariance 
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2. Compute IPP time, 
IPP

kk
t

|
, from 

kk
X

|
using 

kk

j

t
X

|

max
, where jmax is the filter with the highest mode 

probability
j

k
. 

3.  Compute the impact point and covariance using a ballistic template to deal with drag variable Mach.  This 

function has to be pulled from a template on the up-leg for unobserved velocities, but filter estimates are used 

for observed Mach regions.  By apogee, all relevant Mach values have been observed. 
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4.  Project the 7 or 10 state estimate and covariance onto the ground [7], to obtain ground plane IP and IPP 

error estimate. 



5. RESULTS 

The IMM investigation for IPP includes variation across targets (2), target Mach number (3), IMM mixing methods (2), 

and IMM blending methods (3), for a total of 36 conditions.  The focus of this paper is on blending methods for IPP 

with consideration of Mach characteristics.  We will simply note here that differences between the results using the two 

target types and two mixing methods were not significant, and the specific results we present for the 10 state projectile 

using both mixing and blending are representative of the general behavior observed across the other target types and 

mixing methods. 

Analysis runs consist of 20 Monte Carlo trials with noise drawn from Gaussian distribution with a standard deviation in 

position of 50 m at 20 km.  The results of the IMM blending approaches are separated out by the characteristic Mach 

region.  For each of these regions, the IPP error was computed for each trajectory, and the empirical covariance in the 

ground plane was computed from each shot grouping for each filter.  The IPP error vs. time for each of three blending 

methods is shown in Figure 2.  IPP Errors for the three blending methods are shown for the subsonic trajectory in (a), 

the transonic trajectory in (b), and the supersonic trajectory in (c).  It was found that BM3, where all tracks are blended 

at the measurement time, outperformed the other two blending methods the in all three Mach regions, and for both 

target types.  It was particularly interesting to note that BM1, which performs IPP using the filter with the highest mode 

probability, underperformed ground blending as implemented in BM2.  

The empirical standard deviation for the various blending methods is shown in Figure 2.(d), (e) & (f).  For an empirical 

covariance matrix P, the metric used is the square root of the sum of the eigenvalues of P.  This serves as a 

characteristic distance associated with the spread of impact points around the empirical mean.  Notice that the 

covariance terms are not as large as the observed IPP error due to a biasing of the IPP. 

6. CONCLUSIONS 

The use of the IMM for prediction of IPP and IPP covariance was considered in this paper.  The following three 

methods were considered: BM1, propagation of the track estimate with the highest IMM mode probability; BM2, 

propagation of each of the tracks independently to the ground followed by a blending step that used the track mode 

probabilities; and BM3, blending of the track after the most recent measurement followed by propagation to the ground 

using the highest mode probability propagation model.  It was found that BM3 exhibited the best performance across 

each of the 6 target models considered, regardless of whether mixing was used in the track update step or not. 

7. REFERENCES 

1. H.A.P. Blom, and Y. Bar-Shalom, “The Interacting Multiple Model Algorithm for Systems with Markovian 

Switching Coefficients,” IEEE Trans. Auto. Cont., 1988, pp. 780-783. 

2. Bar-Shalom, Y.,  

3. Bar-Shalom, Y., Blair, W.D., editors, “Multitarget-Multisensor Tracking: Applications and Advances Volume 

III,” Artech House, Norwood, MA, 2000, pp. 499-561. 

4. Mazor, E., Averbuch, A., Bar-Shalom, Y., and Dayan, J., “Interacting Multiple Model Methods in Target 

Tracking:  A Survey,” IEEE Transactions on Aerospace and Electronic Systems, Jan. 1998, pp. 103-123. 

5. McCoy, Robert L., “Modern Exterior Ballistics: The Launch and Flight Dynamics of Symmetric Projectiles,” 

Schiffer Publishing Ltd., 1999 

6. Blair, W.D., “Derivation of the Interacting Multiple Model Algorithm for Systems with Markovian Switching 

Coefficients,” preprint. 

7. Kerce, J. Clayton, Brown, George C., “A Flow Field Approach for State Dynamics in Statistical Filtering,” in 

preparation. 

 



 

 (a)  (d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 2  Empirical IPP errors for 10 state trajectory characterized by subsonic (a), transonic (b), and 

supersonic (c) Mach number.  Empirical covariances for these same cases are shown in (d),(e), and (f). 


