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Abstract:  Approximations are derived for the delay and 

bending of a wavefront propagating through the class of 

spherically symmetric refractivity profiles which decay 

exponentially with altitude. These approximations are derived 

by formulating the quantities of interest in terms of an 

optimization problem, the solution of which is then estimated 

for an appropriately chosen candidate path.  Based on these 

approximations, a simple model is introduced to simulate the 

residual measurement errors remaining after the application 

of a notional refraction correction algorithm.  The application 

of this model to the simulation of multi-sensor, multi-

platform tracking is discussed. 

I. INTRODUCTION 

Natural variations in the atmospheric index-of-refraction 

cause bending and delay of radar and optical signals, 

resulting in elevation-dependent measurement biases at the 

sensor.  These measurement biases result in biased position 

and velocity estimates in the track filter [1][2].  Such effects 

are most pronounced for targets at low elevation angles and 

long ranges. 

The main results of this paper are approximations for the 

delay and bending associated with wavefront propagation 

through an exponential refraction profile.  The 

approximations are expressed as simple combinations of the 

physical and geometric parameters as 
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Here the atmospheric parameter  can be expressed in terms 

of the temperature, pressure and humidity at the ground 

through the Smith-Weintraub equation.  The parameter  

defines the lapse rate of the refractive profile.  L is the 

propagation distance, el the target elevation angle, R the 

sensor height in Earth-Centered-Earth-Fixed coordinates 

(ECEF), and the function F is defined in Section II. 

An important feature of these approximations is that they 

do not assume that the target and sensor are at the same 

altitude, a situation that precludes the use of 4/3 Earth type 

models.  Instead, the range error is formulated as an 

optimization problem by applying Fermat’s principle of least 

time [3].  The travel time functional is then evaluated along 

on a suboptimal path that is intuitively close to the true 

solution.  A second order approximation in the exponent of 

the refractivity puts the cost function in the form of a 

Gaussian integral that can be explicitly evaluated.  The 

bending of the true propagation path is approximated by 

computing the bending due to the refraction gradient along 

the path used in the range error calculation. 

The goal of this paper is to develop a method for 

simulating the residual errors that remain after the application 

of a refraction correction algorithm in order to enable the 

study of refraction errors on multiple sensor network tracking 

of multiple targets.  In this application, an individual sensor 

typically implements a correction algorithm to reduce the 

refraction induced angle-of-arrival and range errors to within 

a small fraction of the magnitude of the original errors.  The 

remaining errors are a function of both the refraction model 

and the quality of the meteorological data used as input into 

the model.  Assuming that both the model and the 

meteorological values remain constant throughout a track, the 

residual errors will produce a deterministic track bias in each 

sensor that is a function of both target range and elevation.  

Since the relative ranges and elevations to the targets are 

different for each sensor, the resulting biases will vary 

between sensors as well.  These biases can cause significant 

problems when one attempts to associate tracks from multiple 

sensors. 

The approximations obtained here are compared to the 

results of numerical ray-tracing, and it is found that for 

practical profiles the model agrees with the numerical 

solutions to within about ten percent for all ranges and 

elevations.  As seen from the formulas and ray tracing 

comparison, the resulting residual error model has low 

computational overhead and captures the important 

phenomenology associated with the effects of regular 

refraction for all elevation angles.   
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 An example of the application of this formula to the study 

of track-to-track association is presented using Monte Carlo 

simulation.  The correction residual is chosen from a 

Gaussian probability distribution function with variance 

chosen to reflect the expected accuracy of the correction 

algorithm of the radar. The correction factor remains constant 

throughout each Monte Carlo run.   

This paper is organized as follows. Refraction effects and 

the primary application of interest are reviewed in the 

introduction.  The second section develops the bending and 

delay approximations using Fermat’s principle of least time 

for a model exponential profile.  The final section presents 

some applications of the model with a focus on its use as a 

simulation tool. 

II. DERIVATION OF THE FORMULA 

For an inhomogeneous medium, the index-of-refraction, n, 

at a point x in the medium is related to the speed of light in 

the medium, v, and the speed of light in vacuum, c, by the 

formula ( )
( )

c
n x

v x
 .  With this definition, one can compute 

the travel time,  for light along an arclength-parameterized 

path, x(s), of length L through the formula 
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The principle of least time (PLT) states that among all 

potential paths light could take between two prescribed 

endpoints, the physical path corresponds to the minimizing 

path in the integral above
*
.  Applying this principle, one finds 

that the trajectory of a light ray satisfies the equation 
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where   denotes the spatial gradient and x(s) has initial 

conditions
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Before proceeding to the derivation, let the exponential 

atmospheric profiles be expressed as ( )
( ) 1

h x
n x e


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Here h(x) denotes the height of the point x above the surface 

of the Earth.  These profiles have no variation in angle. The 

parameter  is the decay rate of the profile with altitude. The 

parameter  depends on the meteorological values at the 

sensor through the Smith-Weintraub equation: 
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 More precisely optical paths are stationary points for the 

travel time functional.  The path examined here is assumed to 

be minimizing due to the small deviation of n(x) from unity. 

where P is the pressure in millibars, T is the temperature 

Kelvin, and H is  the partial vapor pressure of water in 

millibars. 

We apply PLT to estimate the range and bending errors that 

result from the assumption of a constant speed of light c 

throughout the path.  The assumption of a constant 

propagation speed results in the range estimation formula 

Rpath = c .  Applying PLT along with the exponential 

atmosphere assumption results in a formula for the excess 

range error R given by 
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Similarly, the definition of the curvature of the path x(s) 

can be used to estimate the total bending of the ray along the 

path through the formula  
1

| | n n x x
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assumed exponential form of n(x), the derivative of the index-

of-refraction with altitude is strictly negative.  Making the 

substitution ( )
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  , we find that the formula for 

the bending is 
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Evaluating the integrals for bending and excess range 

require the evaluation of the integral 
0

( ( ))L h y s
dse


 .  In 

order to estimate this term, the original minimization 

principle and the fact that the parameter 4
3 10


  , while 

1n   will be used.  Because n, the optical path is 

expected to be well approximated by a straight line segment 

joining the path endpoints.  Moreover, since the optical path 

minimizes the travel time, the straight-line approximation 

will produce an upper bound on the travel time functional.  

Given the radar and target position vectors in a spherical 

earth ECEF coordinate system, x
0
 and x

1
, respectively, the 

explicit formulas for y(s) is 
0 0

( )y s x s x  , where 
0

x  is 

chosen so that the condition y(L) = x1 is satisfied.  In the 

plane defined by the radar, target, and earth center, h(y(s)) 

can be expressed in the two coordinates and el, where el 

denotes the elevation of the target relative to the radar as 
2 2
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denotes the Earth’s radius.  Since 
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  in Gaussian form.  Evaluation 

of the resulting integral leads us to the following 

approximation formula, ( , , , )
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with the following parameter definitions 
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The estimate for excess range can now be written  

( , , , )
el radar

R F L R    , 

which is easily converted to (1) using the definition of the 

speed of light.   

The formula (3) for bending can be simplified similarly.  

Noticing that ( ( )) cos( )
el

h y s    and 1n   gives the bending 

estimate 
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For low elevation angles, each of the terms in the formula 

for ( , , , )
el radar

F L R   are small enough in magnitude to compute 

directly.  As el increases, the arguments to the exponentials 

and error function, erf, lead to numerical difficulties.  In this 

case one can apply the approximation 
2 / 2
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and simplify the expression to avoid round off errors. 

Alternative approaches to modeling the refraction-induced 

errors were considered and the current approach is taken for a 

number of reasons.  First, from the standpoint of Monte-Carlo 

simulation, the computational overhead associated with 

numerically computing propagation paths through complex 

atmospheres is significant.  Secondly, more common 

approaches, such as the 4/3 Earth model, are only valid under 

fairly restrictive conditions on the target/sensor geometry [1].  

Finally, alternate modeling approaches, such as 

characterizing the statistics of real atmospheric conditions, 

tend to be overly complex for understanding the effects of 

refraction correction errors on track-to-track association.   

III. EXAMPLES 

The method discussed in the previous section for 

computing range and bending of a wavefront by the 

atmosphere is approximate, and it will not work for all 

parameter values of  and .  Investigation over the 

applicable range of values for simulation evaluation of 

multiplatform tracking shows reasonable behavior, as 

indicated in the example that follows. 

A. Partial Validation of Results 

As a first example, the approximations (1) and (2) derived 

above are compared to solutions computed using numerical 

ray-tracing.  Fig. 1 compares ray-tracing using Snell’s law 

and the approximation for R derived in the previous section 

as a function of slant range to the target at 0
o
, 1

o
 and 5

o
 

elevation.  Notice that the largest error for the approximation 

occurs at 0
o
 and rapidly improves with elevation.  This 

behavior is to be expected, since the propagation path is 

better approximated by a straight line for higher elevation 

than for lower elevation. Observe also that the approximate 

solutions are strictly larger than those obtained by numerical 

ray-tracing.  This too is to be expected, since the 

approximation is obtained from evaluating the objective 

function along a sub-optimal path.  The values chosen for the 

atmospheric parameters are P = 1000 millibars, T = 273 

Kelvin, H = 15 millibars, and =1.75 10
-4

 m
-1

.  This  value 

corresponds to a 50% fall off in refractivity at about 4 km.  

Refractivity, N, is defined through the formula 

 
6

10 1N n  . The meteorological parameters given 

correspond to a value = 3.6 10
-4

. 

Fig. 2 shows the companion plot for bending as a function of 

slant range for the same elevation values. This approximation 

exhibits a larger deviation from the numerical ray-tracing 

solution because an additional approximation was made in 

simplifying the integral.  Notice that the estimates for 

bending do not fall directly out of an optimization problem, 

and there is no a priori reason to expect that the 

approximation would overestimate the true solution.  The 

consistent overestimation seen here is a consequence of the 

relationship between excess bending and excess range. 
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Fig. 1 Comparison of ray-tracing using Snell’s law and the 

approximation for R as a function of slant range to the 

target at 0
o
, 1

o
 and 5

o
 elevation.  The solid line is the 

approximation, while the dashed line is the numerically 

computed curve. 

The difference between computed and approximated 

quantities in Fig. 1 and Fig. 2 are more easily understood by 



 

looking at percentage errors.  Fig. 3 and Fig. 4 show the 

percent error of the approximation, e.g. the difference 

between the computed and approximate solutions divided by 

the computed solution displayed as percentages. 
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Fig. 2 Comparison of ray-tracing using Snell’s law and the 

approximation for bending as a function of slant range to the 

target at 0
o
, 1

o
 and 5

o
 elevation.  The solid line is the 

approximation; the dashed line is the numerically computed 

curve. 

 

Fig. 3 Percent error of excess range approximation when 

compared to the excess range computed from numerical ray-

tracing. 

 

Fig. 4 Percent error of bending approximation when 

compared to the bending computed from numerical ray-

tracing. 

B. Comparison to 4/3 Earth model 

These results are compared with those of a 4/3 Earth based 

height finding model as reported in Table 20.3, Section 20.18 

of  [1].  Upon converting nautical miles into kilometers and 

kilofeet into meters, at 0
o
 elevation and 550 km slant range, 

the 4/3 Earth model has approximately 8% error, whereas the 

model presented here shows approximately a 10% error for 

the same conditions.  The relative performance of these two 

models changes rapidly with elevation.  The 4/3 Earth model 

exhibits an increasing error with elevation, for instance 9% 

error at 0.5
o
, while the error in the model presented here 

decreases, achieving 6% error at 1
o
 elevation.  This 

discrepancy is related to the range of validity in the 

approximations applied to these two models.  The 4/3 Earth 

model is based on a small order expansion around a single 

height, while the model presented here approximates the 

height along the path as a quadratic function which has an 

explicit dependence on target elevation.   For shorter ranges 

the situation is similar.  Comparing the 370 km slant range 

entries [1], one finds that the 4/3 Earth model has a slowly 

increasing error which starts at 4.3% for 0
o
 elevation and is 

approximately 5% for 0.5
o
 through 2

o
.  The model presented 

here shows 4.9% error at 0
o
, 2.5% error at 1

o
, and 0.5% at 5

o
. 

C.  Refraction Effects on Track Association 

As a second example, the effects of the refraction 

correction errors on covariance consistency are examined for 

the case of a single object under track by a single sensor.  The 

sensor is a phased array radar generating monopulse AOA 

estimates with 15 meter range resolution.  The target 

originates beyond the horizon and approaches the sensor.  

The target SNR is 20 dB, ensuring that the effects of 

measurement noise are negligible when compared to the 

refraction effects being studied.  The track is formed based on 

an IMM estimator designed for tracking ballistic missiles.  

The tracking errors of 100 Monte Carlo runs was averaged to 

produce the results reported below. 

For this example, the covariance consistency (CC) is used 

to measure the quality of the empirical covariance in terms of 

the true covariance and is defined as 

1

1

1
ˆ ˆC C ( ) ( )

1
ˆ ˆ( ( )( ) )

T

T

x x P x x
N

trace x x x x P
N





  

  

 

where N is the dimension of the state vector x , x̂  is the track 

estimate,  denotes empirical average, and P is the state 

error covariance estimated by the tracker.  The covariance 

consistency will be approximately unity when the track 

covariance is close to the covariance P.  The deviation of this 

quantity from unity gives rough measure of the overall track 

performance.  Large covariance consistencies result in 

multiple platform track association failure, since the 

confidence regions for the tracks from each sensor will not 

intersect, as illustrated in Fig. 5.  The track association 

problem is addressed by inflating the covariance matrix by an 

elevation dependent term that includes imprecise knowledge 

of the refraction correction. 



 

 

Fig. 5 Refraction effects at low elevation can be larger than 

measurement covariances, resulting in mis-association of 

tracks. 

Fig. 6 shows the simulation results for covariance 

consistency for various bias inflation levels and refraction 

correction conditions.  The CC curve marked by triangles  

(  ) shows track results when refraction effects are absent 

from the simulation.  The curve marked by circles ( ) 

shows CC results for no bias covariance inflation and no 

refraction correction.  The curve marked by squares ( ) 

shows the case of bias covariance inflation and no refraction 

correction.  The curve marked by pluses (+) shows the CC 

history with no bias covariance inflation and 90% refraction 

correction.  The curve marked by crosses (x) shows the CC 

for bias covariance inflation and 90% refraction correction.   

 

Fig. 6 Covariance consistency for various levels of refraction 

correction levels and bias covariance inflation. 

As seen here, bias covariance inflation does lead to better 

covariance consistency, although in the case of no refraction 

correction, CC values are still an order of magnitude larger 

than desired.  

 

IV. CONCLUSIONS 

Approximations were derived for delay and bending of a 

waveform propagating through a spherically symmetric 

atmosphere with exponential decay of refractivity.  These 

approximations are easily calculated and demonstrate good 

agreement with numerical ray tracing.  The approximations 

were compared with the 4/3 Earth model in a common height 

finding application, where the two models showed 

comparable performance at very low elevation.  The delay 

and bending results derived here exhibited better scaling with 

target elevation than the 4/3 Earth model due to the choice of 

the small parameter used in development of the 

approximations.  A model based on these approximations was 

implemented in a computer simulation to illustrate the 

impacts of the refraction on tracking performance.  The 

impacts of refraction on multiplatform multitarget track 

association were also discussed. 
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