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ABSTRACT

This paper considers three nonlinear estimation algorithms for impact point prediction (IPP) of ballistic targets. The
paper assumes measurements are available from a 3D surveillance radar or phased array radar over some portion of
the ballistic trajectory. The ballistic target (BT) is tracked using an extended Kalman filter (EKF), an unscented
Kalman filter (UKF), and a particle filter (PF). With the track estimate as an initial condition, the equations of
motion for the BT are integrated to obtain a prediction of the impact point. This paper compares the performance of
the three filters (EKF, UKF, and PF) for impact point prediction. The traditional Extended Kalman Filter equations
are based on a first-order Taylor series approximation of the nonlinear transformations (expanded about the latest
state estimate). Both the Unscented Kalman Filter and the Particle Filter allow nonlinear systems to be modeled
without prior linearizion. The primary focus of the research presented in this paper is comparing the performance
and accuracy of the Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF), and the Particle Filter
(PF) for impact point prediction. The three filtering techniques are compared to the theoretical Cramer-Rao lower
bounds (CRLB) of estimation error.
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1. INTRODUCTION

The objective is to accurately predict the impact point of a ballistic target. It is assumed that the ballistic target is
tracked for a limited time. Therefore, at some point, estimation of the ballistic target’s trajectory is stopped, and
based on this track history; a predicted impact point is generated. In the case of nonlinear filtering, the optimal
recursive Bayesian estimator requires the entire posterior density of the target state to be computed sequentially
as new measurements are received. However, the recursive propagation of the posterior density, in most cases,
cannot be determined analytically. This would require an infinite dimensional vector and therefore infinite storage.
Consequently, suboptimal techniques, such as the EKF, UKF, and PF, are prevalent and are evaluated in this paper.
These suboptimal techniques are formulated in Sections 3, 4, and 5. The evaluation tool used is the CRLB. The CRLB
provides a lower bound for second-order error, that is, the theoretical lower bound of the variance of estimation error
for the nonlinear dynamic system. The CRLB is formulated in Section 6. Section 2 details the system dynamic and
measurement models. The dynamic model of the ballistic target is characterized by a nonlinear stochastic difference
equation. This equation describes how the state vector of the object evolves over time. The measurement model
defines how the noisy radar measurements relate to the state vector. In general, it is characterized by a nonlinear
stochastic difference equation, as well. Every filter is compared with the CRLB. Section 7 presents IPP performance
results, including error analysis, comparison with the CRLB, and covariance consistency. Finally, conclusions are
drawn in Section 8.

2. MODELS

Before addressing the analysis, it is first helpful to review the underlying models and assumptions. In the interest of
simplicity, the most basic models were selected while maintaining enough complexity to make the analysis interesting.
Because of the geometries considered in this paper, a flat Earth model was chosen to simplify the transformations
from the different frames internal to the simulation and tracker. As a result, the coordinates for the tracker was
chosen to be East North Up (ENU) with the origin arbitrarily selected as the sensor’s position on the ground.
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2.1. Sensor

The tracker is fed with measurements collected by an electronically scanned phased array. This sensor model takes
as input the target’s truth position at a given time in ENU and maps it first into array face coordinates (AFC) and
then into sine-space (RUV). The transformation from ENU into AFC is carried out via a translation which takes
into account the sensor’s location with respect to the reference and a rotation which takes into account the sensor’s
azimuth and tilt angles.

ptargetAFC
= Tlocal to sensor(ptargetENU

− psensorENU
) (1)

Given a point in AFC, the transformation into sine space is implemented with the following equations.

r =
√

x2
AFC + y2

AFC + z2
AFC

U =
xAFC

√

x2
AFC + y2

AFC + z2
AFC

V =
yAFC

√

x2
AFC + y2

AFC + z2
AFC

(2)

These transformations may be combined into a single function, pRUV = h(pENU).

To simplify the analysis, it is assumed that waveform management is performed in a way that guarantees con-
stant SNR regardless of RCS fluctuations and range dependency. It is assumed that some type of angle-of-arrival
estimation takes place to produce U and V estimates. The exact algorithm is not specified, but the covariance of
the measurements are. Likewise, some type of pulse compression is used to produce range estimates with a constant
variance. Given that it is assumed that the SNR is constant throughout the measurements, it is not unreasonable that
the variance associated with the measurements is fixed also. Consequently, the measurements, zmeask , are generated
based on truth, ztruthk

, with added noise based on theses statistics, Pmeas.

zmeask = ztruthk
+

√

Pmeasrk (3)

where
√

Pmeas

√
Pmeas

T
=

√
Pmeas and rk ∈ R

3 and the elements are i.i.d ∼ N (0, 1). In this way the white noise
process rk is mapped into a colored noise process which is added to the truth to produce measurements. Such
a simple model offers the advantage that the parameters needed to describe radar performance such as waveform
parameters, aperture, beamwidth, bandwidth, losses, etc. may be ignored.

To further simplify the analysis the need for an association algorithm is eliminated by making the following
assumptions.

• only a single target is present

• there are no missed detections

• there are no false alarms

2.2. Dynamics

The ballistic equations considered here are obtained by applying Newtons laws to a point mass ballistic model with
drag, and have the general form

ẋp = xv (4)

ẋv = g − ρ xγ |xv|xv (5)

ẋγ = 0, (6)

with initial conditions
xp(0) = p0, xv(0) = v0, xγ = const.

Here the state space is assumed to be seven dimensional cartesian space based on a flat, non-rotating Earth coordi-
nates, S = R

7. The state vector x ∈ S is the stacked vector consisting of the position xp ∈ R
3, the velocity xv ∈ R

3,
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and the drag coefficient in the direction of the velocity xγ ∈ R. The gravitational acceleration vector, g, points
towards the surface of the earth and is assumed here to have magnitude 9.8 m/s2. This model does not account
for important dynamical efffects that would be seen by a tracking or fire control radar, such as lift, coning, or the
Magnus effect, to name a few.

Dynamic range issues arrise from the above formulation of the ballistic equations when propagating covariances
and in performaning measurement updates in the filter. This is due to the fact that xγ ≈ 10−3(kg/m2) while
xv ≈ 102(m/s) and xp ≈ 104(m). For this reason, the ballistic coefficent β = γ−1 is typically used in the seventh
state variable. This change of variable introduces a term with poor linearization properties, and we choose to work
with the δβ formulation of the dynamical equations, introduced by N. Speakman ref[], using the change of variable
β−1 = β−1

0 − β−2
0 δβ. Here β0 is a reference ballistic coefficient and xδβ is the new state variable. With this

substitution, the dynamic equations are expressed in the following form:

ẋp = xv (7)

ẋv = g − ρ

2 β0

(

1 − xδβ

β0

)

|xv|xv (8)

ẋδβ = 0, (9)

with initial conditions
xp(0) = p0, xv(0) = v0, xδβ = const.

and ρ = 1.2255e0.000129p(3), representing the atmospheric density.

These equations apply to the propagation of the state in the EKF, UKF, and PF and are solved by fourth
order Runga-Kutta integration in all cases. The EKF requires the solution of the matrix Ricatti equation for the
covariance:

Ṗt =
∂f

∂x
Pt + Pt

∂f

∂x

T

where P0 is given, and

f(x) =





xv

− ρ
2 β0

(

1 − xδβ

β0

)

|xv|xv

0



 (10)

∂f

∂x
=





03×3 I3×3 03×1

M2,1 M2,2 M2,3

01×3 01×3 01×1



 (11)

M2,1 =
1

2β0

(

1 − δβ

β0

)

|xv| xv

∂ρ

∂xp

T

(12)

∂ρ

∂xp

T

= [ 0 , 0 , − c1 c2 exp
(

−c2[0, 0, 1]T xp

)

] (13)

M2,2 = − ρ

2β0

(

1 − δβ

β0

)(

1

|xv|
xvx

T
v + |xv|I3×3

)

(14)

M2,3 =
ρ

2β0
|xv|xv (15)

3. EXTENDED KALMAN FILTER (EKF)

The EKF implemented was the method commonly described in the accepted literature [3].bibitem The two com-
ponents of the EKF are the prediction step and the update step. In prediction the most recent state including its
covariance are propagated to the time of the current measurement. This was implemented with a 4th order Runga
Kutta integrator with the same underlying model that generated the truth data.

xk+1 = fpropagate(xk) (16)

Pk+1 = fpropagate(Pk) (17)
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Equation 16 is implemented via Equations ?? and ??, while Equation 17 is implemented via an extension of these
to include covariance.

After prediction, the update was implemented with the following equations:

H =
∂h(xk)

∂xk

(18)

dzk = zmeask − h(xk) (19)

Sk = HPkH
T + Pmeas (20)

Kk = PkH
T Sk

−1 (21)

xk+1 = xk + Kkdzk (22)

Pk+1 = Pk − KkSkKk
T (23)

4. UNSCENTED KALMAN FILTER (UKF)

The Unscented Kalman Filter, first introduced by Simon J. Julier and Jeffrey K. Uhlmann, circumvents the problem
of approximating a nonlinear system with a linear system. Its basis is that it is easier to approximate a probability
distribution than to approximate a nonlinear function [1]. Unlike the EKF, the UKF does not approximate the
nonlinear dynamic and measurement models. Instead, it approximates the posterior by a Gaussian density, which
is represented by a set of deterministically chosen sample points. These sample points completely capture the true
mean and covariance of the Gaussian density. When propagated through the true nonlinear system, they capture
the posterior mean and covariance accurately to the 2nd order for any nonlinearity [2].

4.1. The Unscented Transform

The Unscented Transform (UT) is a method for calculating the statistics of a random variable that undergoes a
nonlinear transformation. Consider propagating a random variable, x, with mean, x̄, and covariance, Px, through
an arbitrary nonlinear function,g : R

nx → R
ny to produce a random variable, y.

y = g(x) (24)

The first two moments of y are computed using the UT as follows. First, 2nx + 1 weighted sample points, (xi, wi),
are deterministically chosen so that they completely capture the true mean of x denotes respectively as x̄ and Px.
A scheme that satisfies this requirement is:

x0 = x̄ w0 = κ
nx+κ

i = 0

xi = x̄ +
√

(nx + κ)Px wi = κ
2(nx+κ) i ∈ {1, · · · , nx}

xi = x̄ −
√

(nx + κ)Px wi = κ
2(nx+κ) i ∈ {nx + 1, · · · , 2nx}

Where κ is a scaling parameter (such that κ + nx 6= 0) and (
√

(nx + κ)Px)i is the ith row of the matrix square root

L of (nx +κ)Px, such that (nx +κ)Px = LT L, wi is the weight associated with the ith point such that
∑2nx

i=0 wi = 1.
Each sigma point is now propagated through the nonlinear function g:

yi = g(xi), for i ∈ {0, 1, · · · , 2nx} (25)

and the first two moments are computed as follows:

ȳ =

2nx
∑

i=0

wiyi (26)

Py =

2nx
∑

i=0

wi(yi − ȳ)(yi − ȳ)T (27)
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4.2. Filtering Equations

The first step is in the calculation of the 2nx + 1 weighted sample points (xi
k−1, w

i
k−1), i ∈ {0, · · · , 2nx), as shown in

section 4.1 (where nxis the dimension of the state). The prediction is then performed as follows:

x̂k|k−1 =

2nx
∑

i=0

wifk−1(x
i
k−1) (28)

Pxk|k−1 = Qk − 1 +

2nx
∑

i=0

wi(fk−1(x
i
k−1) − x̂k|k−1)(fk−1(x

i
k−1) − x̂k|k−1)

T (29)

The predicted density, p(xk|zk−1) ∼ N (xk; x̂k|k−1,Pxk|k−1) is represented by a set of 2nx+1 sample points: xi
k|k−1 =

fk−1(x
i
k−1). The predicted measurement is then: ẑk|k−1 =

∑2nx

i=0 wi
k−1h(xk

i
k|k−1). The update step is as follows:

x̂k|k = x̂k|k + Kk(zk − ẑk|k−1) (30)

Pxk|k = Pxk|k−1 − KkSkKk
T (31)

where

Sk = Pzz + Pmeas (32)

Kk = PxzSk
−1 (33)

Pzz =

2nx
∑

i=0

wi
k−1(h(xk

i
k|k−1) − ẑk|k−1)(h(xk

i
k|k−1) − ẑk|k−1)

T (34)

Pxz =

2nx
∑

i=0

wi
k−1(xk

i
k|k−1 − x̂k|k−1)(h(xk

i
k|k−1) − ẑk|k−1)

T (35)

5. PARTICLE FILTER (PF)

Particle filters perform sequential Monte Carlo (SMC) estimation based on point mass representation of proba-
bility densities. Particle filters address system nonlinearities with little or no approximation at the cost of more
computational complexity. Particle filters impose no structure on the underlying probability density function of
the unknown quantity (recall the Kalman filter imposes the Gaussian structure). State estimation problems with
nonlinear dynamic or measurement models and non-Gaussian noise processes pose fundamental difficulties when ap-
plying standard Kalman filtering techniques. Alternatively, particle filtering techniques are well-suited to problems
in which nonlinearities and non-Gaussian noise processes exist. A particle filter approximates the probability density
function of an unknown random variable (or random vector) by a set of samples, in which each sample represents a
possible value of the unknown random quantity. Thus, the filter’s accuracy is a function of the number of particles
propagated by the filter. While the particle filter method can require significant computational resources due to the
fact that many particles need to be used at each time step, the introduction of new computational methods and
the ever-increasing speed of computers have made particle filters useful for many real-world applications. The filter
consists of two steps: the particles are propagated through the system dynamic equations in a prediction step and
the weights associated with each particle are updated based on the new observations. A re-sampling step is used to
eliminate particles with low weights and to repopulate the sample set to maintain accuracy.
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Figure 1. Laydown description with sensor array denoted by the box, the trajectory, and the region of ascent were
measurements are collected.

6. CRAMER-RAO LOWER BOUND (CRLB)

7. EXAMPLES

The analysis is based on a a single geometry test case (see Figure 1 and is defined with the following parameters
describing the state at launch and impact along with the parameters denoting the sensor position and orientation.

x(t = 0)launch =





















1000
−250

0
100
0

100
0





















x(t = 27+)impact =





















2393.4
−250.0

0.0
58.9
0

−82.1
0





















psensorENU
=





0.0
0.0
10





θsensortilt = 20o

θsensorazimuth
= 90o

To better understand the relative performance of these three filters, several sets of Monte Carlo trials were con-
ducted. All simulations were carried out over 100 Monte Carlo trials with each filter receiving the same measurements
for a given trial. The trials varied parametrically the angle components of the measurement variance and the velocity
components of the process noise. The process noise was defined as: Q = diag([0 0 0 1e3Qscale 1e3Qscale 1e3Qscale 1e4]).

Because each filter receives the same measurements the estimates of the three candidate methods are follow each
other as can be seen in an example of a typical depicted in Figure 2. Because of their similarity, the EKF and
UKF produce essentially the same plots with this data. The small deviations of the particle filter are due to the
dissimilarity of structure with the other two.

Figures 2-11 denote individual trial results. For large Qscale (see Figure 2) the σ curves of the track covariances
at impact are closely matched.

As is expected the covariance will drop if the process noise is not inflated and the σ curves of the trackers tend to
separate for a given trial. However, if the statics are collected as seen in Table 1, it is evident that the performance
of all three trackers are closely matched over a wide range of the parametric parameters evaluated.
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Qscale [Rz]2,2 [Rz]3,3 EKF UKF PF
Bias (m) STD (m) Bias (m) STD (m) Bias (m) STD (m)

East North A B East North A B East North A B

1/1 1/4 1/4 0.9 -8.1 74.7 74.2 -0.1 -8.0 74.5 74.1 0.1 -7.7 75.6 75.2
1/2 1/4 1/4 -3.6 3.6 62.1 61.9 -4.3 3.6 62.0 61.7 -5.0 3.3 62.7 62.4
1/4 1/4 1/4 -12.9 -2.5 44.7 42.7 -13.4 -2.4 44.7 42.6 -12.7 -2.3 46.3 44.4
1/8 1/4 1/4 1.0 1.5 36.0 35.9 0.6 1.5 35.9 35.8 0.5 1.7 36.7 36.6
1/16 1/4 1/4 0.9 0.2 27.5 27.5 0.5 0.2 27.4 27.4 -0.5 0.1 29.3 29.3
1/32 1/4 1/4 0.6 -2.4 26.1 26.0 0.4 -2.4 26.0 25.8 -0.4 -2.4 27.6 27.5
1/64 1/4 1/4 -0.0 -0.2 22.3 22.3 -0.3 -0.2 22.2 22.2 -1.9 -0.2 24.4 24.4
1/128 1/4 1/4 -2.8 1.2 19.8 19.6 -3.1 1.1 19.7 19.4 -2.3 1.1 20.7 20.5
1/256 1/4 1/4 -2.8 1.0 18.8 18.6 -3.1 1.0 18.7 18.4 -2.4 1.0 19.9 19.7
1/512 1/4 1/4 -0.1 0.9 17.7 17.7 -0.4 0.9 17.5 17.5 -0.6 0.9 19.9 19.8
1/1024 1/4 1/4 -0.1 0.4 17.4 17.4 -0.4 0.4 17.1 17.1 -1.3 0.4 19.9 19.9
1/2048 1/4 1/4 1.6 -0.4 19.9 19.9 1.2 -0.4 19.6 19.6 0.4 -0.3 21.7 21.7

1/8 1/2 1/2 -0.8 0.1 38.8 38.8 -1.2 0.1 38.6 38.6 -2.3 -0.1 39.8 39.8
1/8 1 1 0.2 -5.4 47.1 46.7 -0.0 -5.4 46.9 46.5 -0.9 -5.7 48.0 47.7
1/8 2 2 1.5 5.7 50.9 50.6 1.5 5.5 50.6 50.3 1.2 5.8 52.0 51.7
1/8 4 4 11.5 -3.2 75.3 74.3 13.1 -2.9 74.2 73.0 13.8 -4.0 78.0 76.7
1/8 8 8 6.5 6.2 173.7 173.5 10.8 6.0 155.6 155.1 6.9 9.1 156.7 156.3

1/128 1/2 1/2 -0.8 0.1 38.8 38.8 -1.2 0.1 38.6 38.6 -2.3 -0.1 39.8 39.8
1/128 1 1 -0.8 0.1 38.8 38.8 -1.2 0.1 38.6 38.6 -2.3 -0.1 39.8 39.8
1/128 2 2 3.3 -0.2 17.5 17.2 3.0 -0.2 17.2 16.9 3.5 -0.1 20.0 19.7
1/128 4 4 11.5 -3.2 75.3 74.3 13.1 -2.9 74.2 73.0 13.8 -4.0 78.0 76.7
1/128 8 8 19.6 -28.3 187.6 184.4 14.9 -8.3 158.2 157.3 5.6 -16.1 180.4 179.6
1/2048 1/2 1/2 0.1 1.4 18.6 18.5 -0.5 1.4 18.4 18.4 -0.6 1.3 21.1 21.0
1/2048 1 1 1.5 -1.2 25.8 25.7 0.7 -1.2 25.7 25.7 -0.8 -1.7 28.7 28.6
1/2048 2 2 1.7 3.7 43.0 42.8 -0.0 3.8 42.9 42.8 0.6 4.7 46.6 46.4
1/2048 4 4 -1.3 2.1 78.1 78.0 -3.5 2.3 76.7 76.6 -4.3 1.8 79.5 79.4
1/2048 8 8 14.2 -12.7 160.5 159.4 13.7 -9.2 137.3 136.3 16.5 -4.7 144.4 143.4

1/8 1/2 1/4 -1.4 0.1 38.4 38.4 -1.7 0.1 38.3 38.3 -2.7 -0.1 39.5 39.4
1/8 1 1/4 -1.0 -5.5 45.3 44.9 -1.2 -5.5 45.2 44.8 -1.9 -5.9 46.2 45.8
1/8 2 1/4 1.4 3.1 47.4 47.3 1.2 3.0 47.3 47.2 0.1 2.4 49.4 49.3
1/8 4 1/4 -0.9 -5.0 71.1 70.9 -1.3 -5.2 70.5 70.3 -2.9 -7.8 73.2 72.7
1/8 8 1/4 4.9 -25.6 167.3 165.3 3.6 -12.2 146.0 145.4 0.9 -18.1 144.1 143.0

1/128 1/2 1/4 -1.4 0.1 38.4 38.4 -1.7 0.1 38.3 38.3 -2.7 -0.1 39.5 39.4
1/128 1 1/4 -1.4 0.1 38.4 38.4 -1.7 0.1 38.3 38.3 -2.7 -0.1 39.5 39.4
1/128 2 1/4 3.3 -0.2 17.5 17.2 3.0 -0.2 17.2 16.9 3.5 -0.1 20.0 19.7
1/128 4 1/4 -0.9 -5.0 71.1 70.9 -1.3 -5.2 70.5 70.3 -2.9 -7.8 73.2 72.7
1/128 8 1/4 7.2 -14.3 158.8 158.0 1.9 -7.0 128.7 128.5 1.5 -1.4 133.4 133.4
1/2048 1/2 1/4 0.0 1.4 18.6 18.5 -0.4 1.4 18.4 18.3 -0.5 1.3 20.7 20.6
1/2048 1 1/4 0.5 -1.2 24.6 24.6 -0.0 -1.2 24.5 24.5 -1.7 -1.7 26.7 26.6
1/2048 2 1/4 1.7 -2.4 36.1 35.9 0.6 -2.1 35.9 35.9 1.6 -2.2 39.1 39.0
1/2048 4 1/4 4.6 -4.9 70.8 70.5 2.4 -2.2 69.8 69.7 1.6 -3.8 71.7 71.6
1/2048 8 1/4 10.8 -33.4 164.0 160.2 6.8 -6.3 132.9 132.6 6.0 -8.6 136.3 135.8

Table 1. Bias and standard deviation IPP estimates averaged over 100 Monte Carlo Runs computed with the three
candidate techniques.
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[Rz]2,2 (deg)
1/4 1/2 1 2 4 8

1/4 17.2 18.5 22.9 35.2 63.8 122.5
1/2 19.0

[Rz]3,3 1 24.2
(deg) 2 38.6

4 71.1
8 137.4

Table 2. IPP CRLB (m) as a function of angle-of-arrival estimate variance in measurements.
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Figure 2. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.
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Figure 3. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.

2250 2300 2350 2400 2450 2500
−280

−270

−260

−250

−240

−230

−220

IPP x−axis (m)

IP
P

 y
−

ax
is

 (
m

)

IPP with Q
scale

 = 1/2048,  R
z
 = diag([30 (m) , (1/4) o , (1/4) o])2 

 

 

EKF σ 2σ 3σ
UKF σ 2σ 3σ
PF σ 2σ 3σ
Truth
Particlesl

Figure 4. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.
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Figure 5. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.
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Figure 6. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.

10



2320 2340 2360 2380 2400 2420 2440 2460 2480 2500
−275

−270

−265

−260

−255

−250

−245

−240

−235

IPP x−axis (m)

IP
P

 y
−

ax
is

 (
m

)

IPP with Q
scale

 = 1/128,  R
z
 = diag([30 (m) , (1/4) o , (1/4) o])2 

 

 

EKF σ 2σ 3σ
UKF σ 2σ 3σ
PF σ 2σ 3σ
Truth
Particlesl

Figure 7. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.

2250 2300 2350 2400 2450 2500 2550 2600
−800

−600

−400

−200

0

200

400

IPP x−axis (m)

IP
P

 y
−

ax
is

 (
m

)

IPP with Q
scale

 = 1/128,  R
z
 = diag([30 (m) , (8) o , (1/4) o])2 

 

 

EKF σ 2σ 3σ
UKF σ 2σ 3σ
PF σ 2σ 3σ
Truth
Particlesl

Figure 8. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.
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Figure 9. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.
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Figure 10. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.
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Figure 11. Comparison of Impact Point Prediction error of 100 Monte Carlos runs of the EKF, UKF, and PF.

8. CONCLUSIONS AND FURTHER RESEARCH

Because of the similarity of performance of the three filter methods over a wide range of parametric parameters, it
was shown that for ballistic problems like the one evaluated here, there the particle filter offers no improvement over
the EKF and UKF. In fact when operation counts are considered, the EKF must be considered the algorithm of
choice.
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